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Abstract
General relativity is a deterministic theory with non-fixed causal structure.
Quantum theory is a probabilistic theory with fixed causal structure. In this
paper, we build a framework for probabilistic theories with non-fixed causal
structure. This combines the radical elements of general relativity and quantum
theory. We adopt an operational methodology for the purposes of theory
construction (though without committing to operationalism as a fundamental
philosophy). The key idea in the construction is physical compression. A
physical theory relates quantities. Thus, if we specify a sufficiently large
set of quantities (this is the compressed set), we can calculate all the others.
We apply three levels of physical compression. First, we apply it locally
to quantities (actually probabilities) that might be measured in a particular
region of spacetime. Then we consider composite regions. We find that there
is a second level of physical compression for a composite region over and
above the first level physical compression for the component regions. Each
application of first and second level physical compression is quantified by a
matrix. We find that these matrices themselves are related by the physical
theory and can therefore be subject to compression. This is the third level of
physical compression. The third level of physical compression gives rise to
a new mathematical object which we call the causaloid. From the causaloid
for a particular physical theory we can calculate everything the physical theory
can calculate. This approach allows us to set up a framework for calculating
probabilistic correlations in data without imposing a fixed causal structure (such
as a background time). We show how to put quantum theory in this framework
(thus providing a new formulation of this theory). We indicate how general
relativity might be put into this framework and how the framework might be
used to construct a theory of quantum gravity.

PACS numbers: 04.60.−m, 04.90.+e

It is a great honour to dedicate this paper to Giancarlo Ghirardi. One lesson
implicit in his work on collapse models, and particularly taken to heart here,
is that we should think of modifying quantum theory in a hope to go beyond
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our present theories. Only then can we hope for experimental discrimination
between theories.

1. Preliminary remarks

The great outstanding problem in theoretical physics left over from the last century is to find a
theory of quantum gravity. A theory of quantum gravity (QG) is a theory which approximates
quantum theory (QT) and general relativity (GR) in appropriate limits (including, at least,
situations where those theories have already been experimentally verified). The problem
is to go from two theories which are less fundamental to one which is more fundamental.
Of course, it is possible, at least logically, that a theory of quantum gravity can be entirely
formulated inside one of these two component theories. The main approaches to QG assume
that the quantum framework is sufficient. Indeed, it is often stated that the problem is to
quantize general relativity. In string theory (and its various descendants) an action is written
down which defines the motion of strings (or membranes) on a fixed spacetime background
[1]. This is formulated entirely within the quantum framework. In loop quantum gravity,
Einstein’s field equations are written in cannonical form (so we have a state across space
evolving with respect to some time parameter) and then quantization methods are applied
[2]. In this paper, we will not assume that QG can be formulated entirely within the standard
quantum framework. Rather we will take a more evenhanded approach. We note that both
GR and QT have conservative and radical features.

General relativity
Conservative feature: General relativity is deterministic. Given sufficient information
on a boundary, there is a unique solution for the physical observables in the theory.

Radical feature: The causal structure is non-fixed. Whether a particular interval δxµ

is spacelike or timelike is not specified in advance but can only be determined once we
have solved the Einstein field equations for the metric.

Quantum theorm

Conservative feature: The causal structure is fixed in advance. We will elaborate on this
in section 2.

Radical feature: The theory is irreducibly probabilistic. That is to say, we cannot state
the postulates of standard QT without reference to probabilities.

It is curious that each theory is radical where the other is conservative. It is likely that QG
must be radical in both cases. Thus, we take as our task to find a framework for physical
theories which

(1) Is probabilistic.
(2) Admits non-fixed causal structure.

If we are able to find such a framework then we can hope to formulate both QT and GR as
special cases. And, more importantly, we can expect that QG will also live in this framework.

To begin we need a starting point. Fortunately, if we look back to the historical conceptual
foundations of GR and modern QT we see that they have in common a certain operationalism.
In his 1916 review paper ‘The foundation of the general theory of relativity’ Einstein motivates
the crucial requirement of general covariance in various ways by appealing to operational
reasoning. For example, he says



A framework for probabilistic theories with non-fixed causal structure 3083

All our spacetime verifications invariably amount to a determination of spacetime
coincidences. ( . . . ) Moreover, the results of our measurings are nothing but
verifications of such meetings of the material points of our measuring instruments
with other material points, coincidences between the hands of a clock and points on
the clock dial, and observed point events happening at the same place and the same
time.

The introduction of a system of reference serves no other purpose than to facilitate
the description of the totality of such coincidences [3].

(and hence, since these coordinates are merely abstract labels, the laws of physics must be
invariant under general coordinate transformations). The first sentence of Heisenberg’s 1925
paper ‘Quantum-theoretical re-interpretation of kinematic and mechanical relations’, which
marked the birth of modern quantum theory, reads

The present paper seeks to establish a basis for theoretical quantum mechanics
founded exclusively upon relationships between quantities which in principle are
observable [4].

Heisenberg was, of course, very much influenced by the operationalism of Einstein. Given
this common starting point for the two theories, it makes sense to adopt it here also. Thus,
we will adopt an operational methodology. Before proceeding, it is important to qualify this.
We are adopting an operational methodology for the purposes of theory construction. This
does not commit us to operationalism as a fundamental philosophy (in which the reality of
anything beyond the operational realm is denied). Operationalism is a potentially powerful
methodology precisely because it can remain neutral about what is happening beyond the
operational realm and consequently enable us to make statements about a physical situation
we know, at least, are not wrong.

We will try to be particularly careful to formulate a version of operationalism that is useful
for our purposes. The key aspect of the operational realm is that it is possible to accumulate
data recording the settings of the instruments and the outcomes of measurements. Hence, our
starting point will be the following assertion

Assertion: A physical theory, whatever else it does, must correlate recorded data.

Of course, a physical theory may do much more than correlate data—it may provide an
explanation of what happens, it may provide a picture of reality, it may provide a unified
description of diverse physical situations. However, in order that a physical theory be
considered as such, it must be capable of correlating data. Once again, it is important to assert
that this does not commit us to an operational philosophy of physics. Nevertheless, the fact that
physical theories must be capable of correlating data places constraints on the mathematical
structures that can serve as such theories. We will look at how a theory can correlate data and
find a general mathematical framework for physical theories. Operationalism can be regarded
as a kind of conceptual scaffolding used to construct this mathematical framework. Once we
have found this framework we are free, should we wish, to disregard the scaffolding and regard
the mathematical framework as a fundamental description of the world. Something like this
happened when we went from Einstein’s operationally formulated version of special relativity
to Minkowski’s picture.

In both GR and QT there is a matter of fact as to whether a particular interval is timelike or
not (in GR we can only establish this after solving for the metric). In QG we expect the causal
structure to be non-fixed as in GR. However, in standard quantum theory, there is no matter
of fact as to the value of any non-fixed physical quantity unless it is measured (or specially
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prepared). Hence, in QG we expect that there will be no matter of fact as to whether a particular
interval is timelike or not unless a measurement is performed to determine it. This means
that we cannot assume that there is some slicing of spacetime into a time-ordered sequence of
spacelike hypersurfaces. Many of the concepts we usually take for granted in physics, such
as evolution, state at a given time, prediction, and preparation have to be re-examined in the
light of these considerations.

The formalism presented in this paper first appeared in [5]. The present paper is almost
self-contained though a few proofs which do not appear here are in [5].

2. Exploration of causal structure in QT

In this section we will elaborate, as promised, on the nature of the fixed causal structure in
QT. The most immediate manifestation of this is that the state in quantum theory is given by

|ψ(t)〉 = U(t)|ψ(0)〉. (1)

We see that there is a background time t which assumes that there is a certain fixed causal
structure (past influences future) acting in the background. However, a deeper insight into
causal structure in QT is gained by thinking about the relationships between operators that
pertain to distinct spacetime regions. If these two spacetime regions are spacelike separated
then the operators should commute. In this picture we are thinking of operators which act on
the global Hilbert space. An alternative way of thinking is to imagine a local Hilbert space
corresponding to each spacetime region. To be more specific consider two spatially separated
quantum systems with Hilbert spaces H1 and H2 of dimension N1 and N2 respectively. Let
system 1 be acted upon by a quantum gate A. Let system 2 be acted upon sequentially by
three gates B,C and D where gate B is spacelike separated from gate A. Denote the quantum
operators associated with the evolution due to each gate by A,B,C and D (these operators
pertain to the local Hilbert space of the corresponding system). Denote the spacetime regions
in which the gates act on the systems by A,B,C and D. Regions A and B are spacelike
separated. Hence the appropriate way to combine the operators A and B is to use the tensor
product giving A ⊗ B. (As an aside note that the property that the global operators should
commute follows if we write a = A ⊗ I and b = I ⊗ B for the global operators where I is
the identity.) Regions B and C are timelike separated and immediately sequential. Therefore
the appropriate way to combine the operators B and C is by the direct product (composition)
CB. Regions B and D are timelike separated but not immediately sequential. The right way
to combine operators B and D is to use what we will call the question mark product [D?B].
The question mark product is defined by [D?B]C ≡ DCB. It is clearly a linear operator.
We see that we have here three different products. To choose the correct one we need to
know, in advance, what the causal relation is between the two regions. We can only do this
if we specify a particular causal structure in advance and hence this causal structure must be
fixed. We will find a new product—the causaloid product—which unifies these three types of
product treating them in the same way in the context of a more general framework. This will
enable us to formulate a framework in which, in general, we do not need to specify in advance
whether a particular separation is timelike or spacelike (and, indeed, there may be no matter
of fact as to whether the separation is timelike or spacelike).

To gain a clue as to where this framework will come from, consider the above example
further. If we are given A⊗B then we can deduce A and B separately. Likewise if we are given
[D?B] we can deduce B and D separately. This second case is not so obvious—physically
what is happening is that it is possible to break any tight correlation between regions B and D
by considering different possible C’s. In these two cases, all the information available in the
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operators before they are combined remains available afterwards. However, if we are given the
operator CB we cannot deduce C and B separately. The best way to understand the reason for
this is that we can deduce the state for region CB from measurements on region B alone (since
it is the same qubit which passes, in sequence, through these two regions). Consequently,
there is a reduction in the number of parameters required to specify the state for this composite
region (unlike in the case of region AB). This is reflected by a reduction in the number of
parameters required to represent operators CB in the dual space. The reduction in the number
of parameters required to specify the operator is due to correlations between the two regions
coming from the physical theory itself (quantum theory in this case). There is a certain kind
of physical compression. This is also the only case when there is a direct causal connection
between the two regions—within the context of this quantum circuit there is nothing that can
be done to break the correlation between the two regions. We will say that the two regions are
causally adjacent. Hence we see that causal adjacency is associated with a certain kind of
physical compression (which we will call second level physical compression). It turns out that
physical compression is the key—it is the mathematical signature of causal structure. Physical
compression arises since the physical theory relates quantities and consequently we can have
full information about all quantities by listing a subset (the remaining quantities being deduced
from this subset using relations deduced from the physical theory). We will use the notion
of physical compression to formulate a general framework for probabilistic theories which do
not require fixed causal structure.

3. Collection and analysis of data

In experiments we collect data. Data consist of (i) a record of actions taken (such as knob
settings) and (ii) results of measurements and observations (for example observing that a
detector clicks, or observing the reading of a clock). Typically, we will take note when data
are recorded in close proximity. For example, we might note that, at time 02:52 according to
a clock A which is proximate to the Stern–Gerlach apparatus B which was set at angle 55◦,
the detector corresponding to spin-up clicked. Here we have three pieces of data (02:52, 55◦

and spin-up) all recorded in proximity. We will assume that such proximate data are recorded
on a card (one card for each set of proximate data). Thus, at the end of an experiment, a
stack of cards will be accumulated where, on each card, proximate pieces of data are written
as in this example. Of course, it is not necessary that cards are actually used—the data
could be stored in a computer’s memory, in a lab book or in the brain of the experimentalist.
However, the story with the cards will help us set up the framework we are after. The notion
of proximity is clearly a slightly vague one. On this matter, Einstein [3] writes ‘We assume
the possibility of verifying . . . for immediate proximity or coincidence in space-time without
giving a definition of this fundamental concept’. It will ultimately boil down to a matter of
convention and judgement as to what data count as proximate. The convention aspect is under
our control. Typically no two events will be exactly coincident so we will have to set a scale.
If the two events occur to within this scale then we will say that they are proximate. The
choice of scale is a convention. So long as we stick with a consistent convention then there
is no problem. However, there is still a matter of experimental judgement in asking whether
two events are proximate to within this scale. The judgement aspect is not so much under our
control.

We will assume that the first piece of data, x, on each card corresponds to some observation
which we will regard as specifying location. We will have in mind that this corresponds to
spacetime location (although it is not strictly necessary that this is the case). For example,
x could be the spacetime location read off some actual physical spacetime reference frame.
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It could be the GPS position given by the retarded times of four clocks situated on four
appropriately moving satellites. The remaining data on a card are a record of actions (e.g.
knob settings) and observations. The choice of actions is allowed to depend on x. A simple
example is where the data stored on the card are of the form (x, F (x), s) where x is the location
data, F(x) represents the choice of actions such as knob settings (this depends on x) and s
represents outcomes of measurements (for example spin measurements). In the case that there
are multiple knobs F is a multivariable object, and if there are multiple measurement outcomes
obtained at this location then s is, likewise, a multivariable object. We could consider more
complicated examples such as (x, r, F (x, r), s) where r is data that is not regarded as part of
the data representing location but on which the choice of action can, nevertheless, depend. We
will illustrate these ideas with two examples

Probes drifting in space. We imagine a number of probes (n = 1, 2, . . .) drifting in space.
Each probe has a clock with reading tn, some knobs which control the settings, F(n, x), of
various measurements (such as Stern–Gerlach orientations) and some meters with readings
sn. At each tick of the clock on each probe we record on a separate card(

x ≡ (
tn,

{
tnm

})
, n, F (n, x), sn

)
where

{
tnm

}
represents the retarded times seen at probe n on the other probes (we could choose

just a subset of the other probes here). At the end of the experiment, we will end up with one
card for each tick of each probe.

Sequence of spin measurements. Imagine a sequence of five spin measurements performed
on a single spin half particle emitted from a source. We label the spin apparatuses x = 1
to x = 5 and the source x = 0. At the source we collect a card with data x = 0 followed
by whatever data are recorded corresponding to the proper functioning of the source. At
each spin measurement we collect the data (x, θ(x), s) where θ is the orientation of the spin
measurement and s is the outcome (spin-up or spin-down). At the end of the experiment we
will have a stack of six cards.

There are many different possible choices for the function F (corresponding to the various
possible choices of knob settings at different locations). We will imagine that the experiment
is repeated for each possible function. Further, since we are interested in constructing a
probabilistic theory, we will assume that the experiment can be repeated many times for each
F so that we can construct relative frequencies. We will imagine that each time the experiment
is performed the cards are bundled into a stack and tagged with a description of F. After
having repeated the experiment many times for each F we will have a large collection of
tagged bundled stacks of cards. To usefully repeat the experiment it may be necessary to
reset some aspects of the setup such as the clocks. The notion of repeating the experiment is
problematic if we are in a cosmological setting. An alternative approach is discussed in [5].

We will imagine that this collection of tagged bundled stacks of cards is sent to a man
inside a sealed room for analysis. Our task is to invent a method by which the man in the
sealed room can analyse the cards thereby developing a theory for correlating data. The order
in which the cards are bundled into any particular stack does not, in itself, represent recorded
data (all recorded data is written on the cards themselves). Consequently, the man in the sealed
room should not take this into account in his analysis. To be sure of this we can imagine that
the cards in each stack are shuffled before being bundled. The order of the stacks also does
not represent data and so we can also imagine that the bundles themselves are also shuffled
before being sent into the sealed room.

The usefulness of this story with a man inside a sealed room is that he cannot look outside
the room for extra clues on how to analyse the data. Hence, he will necessarily be proceeding
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in accordance with an operational methodology as we discussed earlier. He will have to define
all his concepts in terms of the cards themselves. We will now define some concepts in terms
of the cards.

The full pack, denoted by V , is the set of all logically possible cards over all x, all possible
settings and all possible outcomes—any card that can be collected in the experiment must
belong to V .

An elementary region, denoted by Rx , is the set of all cards taken from V which have some
particular x written on them.

A stack, denoted by Y, is the set of cards collected in one repetition of the experiment.

A procedure, denoted by F, is the set of all cards taken from V which are consistent with the
given function F for the settings. We intentionally use the same notation for the set and for
the function since it will be clear from the context which meaning is implied and, in any case,
the information conveyed is the same (the set F is a more cumbersome way of conveying this
information but it will turn out to be useful below).

It is worth noting that we must have Y ⊆ F ⊆ V for a stack Y tagged with procedure F. We
can define some more concepts in terms of these basic concepts.

A region A region denoted by RO1 is equal to the union of all the elementary regions Rx for
which x ∈ O1. That is

RO1 ≡
⋃
x∈O1

Rx. (2)

We will often abbreviate RO1 by R1.

The procedure in region R1 is given by the set

FR1 ≡ F ∩ R1. (3)

We will sometimes write this as F1. It conveys the choice of measurement settings in region
R1 (more accurately, it conveys the intended choice of measurement settings).

The outcome set in region R1 is given by

YR1 ≡ Y ∩ R1. (4)

We will sometimes write this as Y1. It represents the outcomes seen in this region.
Note that

Y1 ⊆ F1 ⊆ R1. (5)

These definitions may appear a little abstract. However, the idea is very simple. We regard
the cards as belonging to regions, for example R1. In this region we have

(Y1, F1) ⇐⇒ (outcomes in R1, settings in R1). (6)

We will label each possible (Y1, F1) in R1 with α1 = 1, 2, . . .. By analysing the cards in
terms of which regions they belong to the man in the sealed room can form a picture of what
happened during the experiment.

We are seeking to find a probabilistic theory which correlates data. It is worth thinking
carefully about what this means. Probabilities must be conditional. Thus, we can talk about the
probability of A given that condition B is satisfied. But even further, the conditioning must be
sufficient for the probability to be well defined. For example, we can calculate the probability
of a photon being detected in the horizontal output of a polarising beamsplitter given that, just
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prior to impinging on this beamsplitter, it passed through a polarizer orientated at 45◦ to the
horizontal. This probability is well defined (and equal to 1

2 ). However, the probability that the
photon will be detected in the horizontal output of a polarising beamsplitter given that, just
prior to impinging on this beamsplitter, it passed through a plane sheet of glass is not well
defined. We would need more information to be able to calculate this probability. The lesson
to be drawn from this is that it is not always possible to calculate probabilities. Thus, we will
take as the task of the theory the following

(1) To be able to say whether a probability is well defined.
(2) If the probability is well defined to be able to calculate it.

The first task is important and deserves further discussion. One way to think of this is to adopt
an adversary model. Thus, imagine that we were to write down a certain probability for a
photon being detected in the horizontal output of a polarising beamsplitter given that it had just
passed through a plane sheet of glass. Whatever probability we write down, we could imagine
some adversary who can ensure that this probability is wrong. For example, before the photon
impinges on the sheet of glass, the adversary may send the photon through a polarizer set at
some angle he chooses such that our probability is wrong. However, when we have sufficient
conditioning an adversary cannot do this. This is clear in the first example where the photon
passes through a polarizer set at 45◦ just prior to impinging on the polarising beamsplitter.
How do we usually know whether a probability is well defined in physical theories? A little
reflection will reveal that we usually know this by reference to some underlying definite causal
structure. For example, if we have a full specification of the boundary conditions in the
past light cone of some region and we know what settings are chosen subsequent to these
boundary conditions in this past light cone, then we can make well defined predictions for
the probabilities in that region. However, in the case that we do not have some well defined
causal structure to refer to, we cannot proceed in this way. In the causaloid framework to be
presented we will provide a more general way to answer the question of whether a probability
is well defined.

In the notation above, we wish first to know whether the probability

Prob(Y2|Y1, F1, F2) (7)

is (1) well defined and, if so, (2) what this probability is equal to, for all (Y1, F1) and (Y2, F2),
for all pairs of regions R1 and R2. We will now develop a framework which can do this.

4. Three levels of physical compression

4.1. Preliminaries

Consider the probability

Prob(Y |F). (8)

This is the probability that we see some stack Y given procedure F. It is unlikely that this
probability is well defined since it is conditioned only on choices of knob settings and not on
any actual outcomes. Thus, instead, we consider the probabilities

Prob(YR|FR,CV −R) (9)

where R is a large region (one containing a substantial fraction of the cards in V ), YR and
FR are the outcome set and procedure, respectively, in R. And CV −R is some condition on
Y ∩ (V −R) and F ∩ (V −R) (i.e. some condition on what is seen and what is done in region
V − R). We will assume that the probabilities Prob(YR|FR,CV −R) are well defined for all
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YR and FR . We will restrict our attention to the case where condition CV −R is true and then
we will only consider what happens in region R. We might think of CV −R as corresponding
to the conditions that go into setting up and maintaining a laboratory (for example, setting up
the lasers, ensuring that the blinds are kept down, etc.). Since we are always taking CV −R to
be true we will drop it from our notation writing Prob(YR|FR). This way of setting up the
framework is not ideally suited to the cosmological context (where there is not any external
condition like CV −R). Ways round this are discussed in [5].

4.2. First level physical compression

We will develop this framework by employing three levels of physical compression. The first
level of physical compression pertains to a single region R1 (inside R of course). We can write

Prob(YR|FR) = Prob
(
YR1 ∪ YR−R1

∣∣FR1 ∪ FR−R1

)
(10)

We will think of (YR−R1 , FR−R1), which happens in R − R1 as a generalized preparation for
what happens in region R1 (we call it a generalized preparation since it is not, in general,
restricted to the past of R1—rather it pertains to the past, the future, and to elsewhere in so
much as these words have meaning in the absence of definite causal structure). Further, we
will think of each

(
YR1 , FR1

)
as corresponding to some (measurement outcome, measurement

choice) in region R1—we label them with α1. Thus, we have α1 ⇔ (
Y

α1
R1

, F
α1
R1

)
. We can now

write the above probability as

pα1 ≡ Prob
(
Y

α1
R1

∪ YR−R1

∣∣Fα1
R1

∪ FR−R1

)
(11)

We will now define the state in region R1 associated with a generalized preparation in R − R1

to be that thing represented by any mathematical object which can be used to calculate pα1 for
all α1. Given this definition one mathematical object which clearly suffices to represent the
state is

P(R1) =




...

pα1

...


 (12)

We can write

pα1 = Rα1(R1) · P(R1) (13)

where Rα1(R1) is a vector which has a 1 in position α1 and 0’s everywhere else. Now, in
general, a physical theory will correlate these probabilities. This means that they will be
related to each other. Hence, we should be able to specify the state by giving a shorter list of
probabilities (than in P) from which all the other probabilities can be calculated. This provides
some physical compression (compression due to the physical theory itself). In fact we can
choose to stick with linear physical compression. Thus, we write the state as a just sufficient
set of probabilities

p(R1) =




...

pl1

...


 l1 ∈ �1 (14)

where there exist vectors rα1(R1) such that a general probability is given by the linear equation

pα1 = rα1(R1) · p(R1). (15)
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Clearly this is possible since, as a last resort, we have (13). Since the probabilities in p(R1)

are just sufficient for this purpose, there must exist a set of |�1| linearly independent states
chosen from the allowed set of states. We will call �1 the fiducial set in region R1. The choice
of fiducial set for a region is unlikely to be unique. This does not matter. We can choose one
set and stick with it. We have just employed linear physical compression here. It is possible
that if we employed more general mathematical physical compression (allowing nonlinear
functions) we could do better. This does not really matter since we are free to choose linear
physical compression as the preferred form of physical compression. In fact, it can easily be
proven that if we are able to form mixtures of states (as we can in quantum theory) then we
cannot do better than linear physical compression (this is not surprising since probabilities
combine in a linear way when we form mixtures). It is worth noting that in first level physical
compression we implement the label change

α1 −→ l1 (16)

as we go from the set of all α1’s to the fiducial set �1. The exact form of the first level physical
compression is encoded in the vectors rα1 (since if we know these vectors we can undo the
physical compression). We define the matrix

�l1
α1

≡ r
α1
l1

(17)

where r
α1
l1

are the components of rα1 . The matrix �l1
α1

tells us how to undo the first level
physical compression. This matrix is likely to be very rectangular (rather than square).

4.3. Second level physical compression

Now we come to second level physical compression. This applies to two or more disjoint
regions and corresponds to the physical compression that happens over and above the first level
compression for the composite regions. Consider just two disjoint regions for the moment, R1

and R2.

pα1α2 = Prob
(
Y

α1
R1

∪ Y
α2
R2

∪ YR−R1−R2

∣∣Fα1
R1

∪ F
α2
R2

∪ FR−R1−R2

)
(18)

where α1 and α2 label measurement plus outcomes in regions R1 and R2 respectively. Now
we can reason as before. The state for region R1 ∪ R2 is given by any mathematical object
which can be used to calculate all pα1α2 . Employing first level linear physical compression as
before we can write the state as

p(R1 ∪ R2) =




...

pk1k2

...


 k1k2 ∈ �12 (19)

where

pα1α2 = rα1α2(R1 ∪ R2) · p(R1 ∪ R2). (20)

We will now prove that there always exists a choice of fiducial set �12 such that

�12 ⊆ �1 × �2 (21)

where × represents the Cartesian product (e.g. {1, 2}×{5, 6} = {15, 16, 25, 26}). This result is
central to the method employed in this paper. Second level physical compression is nontrivial
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when �12 is a proper subset of �1 × �2. To prove (21) note that we can write pα1α2 as

prob
(
Y

α1
R1

∪ Y
α2
R2

∪ YR−R1−R2

∣∣Fα1
R1

∪ F
α2
R2

∪ FR−R1−R2

)
= rα1(R1) · pα2(R1)

=
∑
l1∈�1

r
α1
l1

(R1)p
α2
l1

(R1)

=
∑
l1∈�1

r
α1
l1

(R1)rα2(R2) · pl1(R2)

=
∑

l1l2∈�1×�2

r
α1
l1

r
α2
l2

pl1l2 (22)

where pα2(R1) is the state in R1 given the generalized preparation
(
Y

α2
R2

∪ YR−R1−R2 , F
α2
R2

∪
FR−R1−R2

)
in region R − R1, and pl1(R2) is the state in R2 given the generalized preparation(

Y
l1
R1

∪ YR−R1−R2 , F
l1
R1

∪ FR−R1−R2

)
in region R − R2 and where

pl1l2 = prob
(
Y

l1
R1

∪ Y
l2
R2

∪ YR−R1−R2

∣∣F l1
R1

∪ F
l2
R2

∪ FR−R1−R2

)
(23)

Now we note from (22) that pα1α2 is given by a linear sum over the probabilities pl1l2 where
l1l2 ∈ �1 × �2. It may even be the case that we do not need all of these probabilities. Hence,
it follows that �12 ⊆ �1 × �2 as required.

We will now explain second level physical compression. This is the physical compression
that happens for a composite region over and above first level physical compression for the
component regions. From (20), (22) we have

pα1α2 = rα1α2(R1 ∪ R2) · p(R1 ∪ R2)

=
∑
l1l2

r
α1
l1

r
α2
l2

pl1l2

=
∑
l1l2

r
α1
l1

r
α2
l2

rl1l2 · p(R1 ∪ R2).

Since we can find a spanning set of linearly independent states p(R1 ∪ R2), we must have

rα1α2(R1 ∪ R2) =
∑
l1l2

r
α1
l1

r
α2
l2

rl1l2(R1 ∪ R2). (24)

We define

�
k1k2
l1l2

≡ r
l1l2
k1k2

(25)

where r
l1l2
k1k2

is the k1k2 component of rl1l2 . Hence,

r
α1α2
k1k2

=
∑

l1l2∈�1×�2

r
α1
l1

r
α2
l2

�
k1k2
l1l2

. (26)

This equation tells us that if we know �
k1k2
l1l2

then we can calculate rα1α2(R1 ∪ R2) for the
composite region R1 ∪ R2 from the corresponding vectors rα1(R1) and rα2(R2) for the
component regions R1 and R2. Hence the matrix �

k1k2
l1l2

encodes the second level physical
compression (the physical compression over and above the first level physical compression of
the component regions). We can use it to define the causaloid product

rα1α2(R1 ∪ R2) = rα1(R1) ⊗� rα2(R2) (27)

where the components are given by (26). The causaloid product generalizes and unifies
the various products for quantum theory discussed in section 2 (though in the context of
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a more general framework—we will show in section 5 how quantum theory fits into this
framework).

We can implement second level physical compression for more than two regions by
applying the same reasoning. Thus, for multi-region physical compression, we implement

l1l2 . . . ln −→ k1k2 . . . kn (28)

in going from �1 × �2 × · · · × �n to �12...n where the matrix

�
k1k2...kn

l1l2...ln
(29)

encodes the second level physical compression.

4.4. Third level physical compression

Finally, we come to third level physical compression. We can consider all regions to be
composite regions made from elementary regions Rx,Rx ′ , Rx ′′ , etc. Then we generate the
following set of � matrices.



�lx
αx

for all x ∈ OR

�
kxkx′
lx lx′ for all x, x ′ ∈ OR

�
kxkx′ kx′′
lx lx′ lx′′ for all x, x ′, x ′′ ∈ OR

...
...




(30)

where OR is the set of x in region R. Given these � matrices we can calculate the r vectors
for any measurement outcome for any region using the causaloid product. Now, just as the
probabilities are related to one another by the physical theory (thus enabling first and second
level physical compression), we might expect that these � matrices are related to one another
enabling us to calculate all of them from a smaller set. Hence, we expect to be able to enact a
third level of physical compression where the object

Λ ≡ (subset of �’s; RULES) (31)

enables us to calculate an arbitrary lambda matrix from the given subset (where RULES are
a set or rules for doing this). Such third level physical compression is, indeed, possible. In
section 5 we will show how it is enacted in quantum theory. We will call Λ the causaloid
(because it contains information about the propensities for different causal structures). This is
the central mathematical object in this paper. For any particular physical theory the causaloid
is fixed (this is modulo certain qualifications concerning what might be regarded as boundary
conditions that come from the conditioning CV −R , though these issues will, most likely, go
away once we are in a cosmological setting [5]). In fact, once we know the causaloid we can
perform any calculation possible in the physical theory (see section 4.5). Consequently, the
causaloid can be regarded as a specification of a physical theory itself.

The third level physical compression is accomplished by using identities relating �

matrices. We can use these to calculate higher order � matrices (having more indices and
corresponding to larger regions) from lower order ones when certain conditions on the � sets
are satisfied. We will state some identities of this form without proof. First, when � sets
multiply so do � matrices.

�
kx ···kx′ kx′′ ···kx′′′
lx ···lx′ lx′′ ···lx′′′ = �

kx ···kx′
lx ···lx′ �

kx′′ ···kx′′′
lx′′ ···lx′′′ if �x···x ′x ′′ ···x ′′′ = �x···x ′ × �x ′′ ···x ′′′ (32)
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Second, there exists a family of identities from which � matrices for composite regions can
be calculated from some pairwise matrices (given certain conditions on the � sets). The first
of this family is

�
k1k2k3
l1l2l3

=
∑

k′
2∈�23/

�
k1k2

l1k
′
2
�

k′
2k3

l2l3
if �123 = �12 × �2/3 and �23 = �23/ × �2/3 (33)

where the notation �2/3 means that we form the set of all k3 for which there exists k2k3 ∈ �23.
The second in this family of identities is

�
k1k2k3k4
l1l2l3l4

=
∑

k′
2∈�23/,k

′
3∈�34/

�
k1k2

l1k
′
2
�

k′
2k3

l2k
′
3
�

k′
3k4

l3l4
if

�1234 = �12 × �2/3 × �3/4

�23 = �23/ × �2/3

�34 = �34/ × �3/4

(34)

and so on. These identities are elementary to prove (see [5]).

4.5. Using the causaloid to calculate correlations

Once we have the causaloid, we can use it to calculate any rα1(R1) for any α1 and for any
region (whether composite or elementary) by using the causaloid product (using �lx

αx
from first

level physical compression to get the components of the rαx
(Rx) vectors for the elementary

regions to get us started). The causaloid can be used to calculate conditional probabilities as
we require of the formalism. Note that using Bayes rule we obtain

p ≡ Prob
(
Y

α1
1

∣∣Yα2
2 , F

α1
1 , F

α2
2

) = rα1α2(R1 ∪ R2) · p(R1 ∪ R2)∑
β1

rβ1α2(R1 ∪ R2) · p(R1 ∪ R2)
(35)

where β1 runs over all outcomes for the measurement associated with α1 (recall that α1 labels
a particular outcome of a particular measurement). In general this probability depends on
the state p(R1 ∪ R2) which is associated with the generalized preparation outside R1 ∪ R2.
Hence, strictly, we should include conditioning on this otherwise the probability is not well
defined. However, in the special case where this probability does not depend on p(R1 ∪ R2),
this conditioning is not necessary—the probability is well defined as written. Therefore

(1) p is well defined iff

rα1α2(R1 ∪ R2) is parallel to
∑
β1

rβ1α2(R1 ∪ R2) (36)

because this is the only way for the probability to be independent of the state p(R1 ∪ R2)

since there exists a linearly independent spanning set of such states.

(2) If p is well defined then it is given by

rα1α2(R1 ∪ R2) = p
∑
β1

rβ1α2(R1 ∪ R2) (37)

(i.e. equal to the ratio of the lengths of the vectors).

This works for any pair of regions. Hence, if we know the causaloid we can calculate whether
any probability is well defined and we can calculate its value if it is—this is the task we set
ourselves at the end of section 3.
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5. Formulating quantum theory in the causaloid framework

We will show that the theory for an arbitrary number of pairwise interacting qubits can
be formulated within this framework. Universal quantum computation can be carried out
with such a system and so we will regard this as being general enough for our purposes.
First, consider a single quantum system (which may be a qubit) acted up on by a sequence
of transformations/measurements labelled by t = 1, 2, . . . , T . We can visualize this
as a sequence of boxes where each box has a knob for setting, F(t), of the particular
measurement being implemented and some meters which record the outcome st of the
measurement. We record (t, F (t), st ) on a card for each t. In quantum theory such
a measurement/transformation is associated with a set of completely positive trace non-
increasing linear maps (or superoperators)

{
$(t,F (t),st )

}
such that

∑
st

$(t,F (t),st ) (the sum is over
all outcomes associated with a given measurement choice and a given t) is trace preserving.
In our previous notation, t plays the role of x, the elementary regions are Rt (equal to the
set of all cards that can have t on them), and (Yt , Ft ) corresponds to ( outcome, setting) in
Rt . Further, we label each possible (Yt , Ft ) by αt in accordance with our previous notation.
Superoperators act on the input state to produce an output state

ρ(t + 1) = $αt
(ρ(t)). (38)

Two important examples of superoperators are the unitary map ρ → UρU † (which preserves
the trace) and the projection map ρ → P̂ ρP̂ (which decreases the trace in general). In general,
the probability of seeing the sequence of outcomes s1, s2, . . . , sT , given some procedure F(t),
is given by

prob(YT , YT −1, . . . , Y1|FT , FT −1, . . . , F1, ρ(0))

= trace[$αT
◦ $αT −1 ◦ · · · ◦ $α1(ρ(0))] (39)

Now let us consider one elementary region Rt . We will write the probability in (39) as

pαt
= trace[$T ◦ · · · ◦ $αt

◦ · · · ◦ $1(ρ(0))] (40)

where we have suppressed α’s from our notation except at the crucial time t. Now note that,
since superoperaters are linear, we can expand a general superoperator in terms of a linearly
independent fiducial set. We will label the fiducial set by lt ∈ �t (we have |�t | = N4 where N
is the dimension of the Hilbert space for the system under consideration). Thus, we can write

$αt
=

∑
lt

r
αt

lt
$lt (41)

where $lt is the fiducial set (this is not a unique choice). Putting this into (40) gives

pαt
= rαt

· p (42)

where we are using our previous notation. The � matrices for the elementary regions are then
given by �lt

αt
= r

αt

lt
obtained by solving the set of linear equations (41). This accomplishes

first level physical compression for the elementary regions Rt for a single quantum system
going from label αt to label lt .

Now we will write the probability in (39) as

pαt ′αt
= trace

[
$T ◦ · · · ◦ $αt ′ ◦ · · · ◦ $αt

◦ · · · ◦ $1(ρ(0))
]

(43)

where we have suppressed α’s from our notation except at times t and t ′ > t . If t ′ = t + 1 then
these two times are immediately sequential. For a reason that will soon become apparent, we
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will choose the first member of each fiducial set of superoperators to be equal to the identity
map so we have $1 = I (where I is the identity map). Then we can write

$αt ′ ◦ $αt
=

∑
kt

r
αt ′αt

1kt
I ◦ $kt

(44)

since the composition of two superoperators using ◦ is a map on ρ and lives in the same space
as a single superoperator and so we can expand the composition in terms of a fiducial set of
linearly independent superoperators at one time. This means that

�t ′t = {1} × �t if t ′ = t + 1 (45)

and we see that we have non-trivial physical compression. The � matrices for this second
level physical compression of pairs of sequential elementary regions are given by

�
1kt

lt ′ lt
= r

lt ′ lt
1kt

(46)

by solving (44). The same technique works when we have any number of immediately
sequential regions. For three immediately sequential regions we have

�t ′′t ′t = {1} × {1} × �t if t ′′ = t ′ + 1 = t + 2 (47)

and so on.
In the case that we have non-sequential times t and t ′ there is no physical compression

and

�t ′t = �t ′ × �t if t ′ > t + 1. (48)

Proof of this requires careful consideration of the form of (43) above. We will omit this
proof here. However, the physical reason for this is that different choices of intervening
superoperators break the possibility of any tight correlations between the two regions and so
there is no physical compression. The same is true for any two clumps of regions with a gap,

�t ′′′...t ′′t ′...t = �t ′′′...t ′′ × �t ′...t if t ′′ > t ′ + 1. (49)

We now come to third level physical compression. We can implement third level physical
compression by noticing the following. First note that we can divide any composite region into
a set of regions which we will call ‘clumps’ where the regions in each clump are immediately
sequential, and where there are gaps between the clumps. Now note that (45) (and its
generalizations, such as (47) to any number of immediately sequential regions) satisfies the
conditions on � sets such that identity (33) (and its generalizations such as (34)) hold. Hence,
for each clump of immediately sequential regions we can calculate the � matrix employing
this family of identities using just the � matrices for pairs of immediately sequential regions.
Secondly, we see that (49) satisfies the condition for identity (32) to hold—so that we can
simply multiply the � matrices from each clump to get the � matrix we are looking for. We
will call this method the ‘clumping method’. This means that we can write the causaloid for
a single system in quantum theory as

Λ = (
�lτ

αt
, �

kt+1kt

lτ+1lτ
; RULES = clumping method

)
(50)

where τ is some particular time t (we only need specify these matrices for one τ since they
will be the same for all other t by symmetry).

Now we will consider pairwise interacting qubits. Examples of such pairs of interactions
are given in figure 1 (we will call these causaloid diagrams). Let each qubit be labelled by
i. The qubits are shown by the thin lines. The nodes represent the elementary regions. If
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(a)

(b)

(c)  

(d )

Figure 1. Diagrams for (a) a single system (b) two interacting systems, and (c), (d) a number of
systems interacting.

two qubits pass through a node then they can interact in that elementary region. Nodes are
labelled by x. Adjacent nodes (between which a qubit passes) are represented by links. If
we consider a single qubit i then a sequence of times for this qubit is associated with the
sequence of labels x along the thin line. We can build up the causaloid for this system of
interacting qubits by extending the methods above. To do this consider a node, x, at which
two qubits, labelled by i and j , interact. We can act on these two qubits jointly with some
measurement/transformation. This will be associated with a set of superoperators $αx

. A
special subset of these superoperators are those that can be written in tensor product form
$i

αxi
⊗ $j

αxj
where αx ≡ (αxi, αxj ) in these cases. A subset of these are $i

lxi
⊗ $j

lxj
where

lxi ∈ �xi labels a fiducial set of linearly independent superoperators on qubit i, and similarly
for j . Now, it turns out that this particular set of product form superoperators form a complete
linearly independent set for the general superoperators on the two qubits. That is, we can write

$αx
=

∑
lxi lxj ∈�xi×�xj

r
αx

lxi lxj
$i

lxi
⊗ $j

lxj
. (51)

This means we can use fiducial measurements for which the qubits effectively decouple. For
each qubit we can apply the clumping method to find the causaloid for that qubit. Since the
qubits effectively decouple for the fiducial measurements, the � sets for composite regions
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involving more than one qubit will factorize between the qubits. Hence, a general � matrix
involving more than one qubit can be obtained by multiplying the corresponding � matrices
for each qubit. Then, to couple the qubits, we need only add the full specification of the local
lambda matrices

�
lxi lxj
αx

= r
αx

lxi lxj
(52)

which can be calculated from (51). Hence, the causaloid is given by

Λ =
({

�
lxi lxj
αx

∀ x
}
,
{
�

kxikx′
lxi lx′ ∀ adjacent x, x ′};{

clumping method
causaloid diagram

})
. (53)

Note, if a node only has one qubit passing through it then we list �lxi
αx

rather than �
lxi lxj
αx

. There
is quite considerable physical compression at the third level. If there are M nodes, then we only
need list of order M matrices (and these are low order matrices having only a small number
of indices) even though the number of possible � matrices grows exponentially with M. We
will, most likely, be able to obtain further third level physical compression since symmetry
considerations will mean that we do not have to list separately the � matrices for all x and for
all adjacent x, x ′.

6. Ideas on how to formulate general relativity in the causaloid framework

General relativity has not yet been put into the causaloid framework. Such a formulation of
GR would be operational. One idea is to pursue a line of thought suggested by Einstein. He
says

If, for example, events consisted merely in the motion of material points, then
ultimately nothing would be observable but the meetings of two or more of these
points [3].

Thus, the data written onto a card would be a list of particles (assume each of these particles
is labelled) which are proximate. We would collect many such cards forming a stack. The
purpose of the physical theory would be to correlate the data on these cards—and hence we
would expect the causaloid formalism to work for this purpose. There are a few problems
with this approach. Einstein introduces metric notions and it is not clear how this could be
recovered merely by looking at sets of coincidences. One possible way to solve this problem
would be to equip each point particle with a clock and record the time of each particle’s
clock on the card also. Another problem is that the causaloid formalism is discrete rather
than continuous. There are discrete formulations of GR [6, 7] but these tend to be in the
canonical picture. Nevertheless, we would probably be satisfied with a discrete formulation
of GR in the causaloid framework—especially if it turns out that QG is, itself, a discrete
theory since then GR would just be the continuous limit of a discrete theory. Unlike GR, the
causaloid framework has a notion of agency (there are knob settings). However, no agency
is a special case of agency (where there is only one choice) so this need not be a problem.
Alternatively, we could try to recover the notion of agency in GR. For example, we could
consider tiny differences in the matter distribution (such as those in the brain) which are below
the resolution of our experiment to be magnified so they are above the resolution. This could
be modelled in GR.

The theory we really want is what might be called probabilistic GR (ProbGR). This would
be to GR what statistical mechanics is to Newtonian mechanics. One problem with formulating
ProbGR is that normally, when we formulate a statistical version of a deterministic theory, we
take a mixture of definite states across space at a definite time. However, this would require



3098 L Hardy

a 3 + 1 splitting against the spirit of GR and certainly against the spirit of QG. However, the
causaloid framework would be a natural setting for ProbGR without introducing any such
splitting.

7. Ideas on how to formulate quantum gravity in the causaloid framework

There are two strategies we might adopt to find a theory of QG in the causaloid framework.
First, we could formulate both QT and ProbGR in this framework and then hope that some way
of combining the essential features of the two theories presents itself. The ‘map’ that takes
us from CProbT to QT could be applied to ProbGR to get QG. This approach might work.
However, from a conceptual point of view it is not necessarily so clean. We are taking two
less fundamental theories as part of the process by which we obtain a more fundamental one.
An alternative approach would be to attempt to derive a theory of QG within the causaloid
framework from scratch by invoking some deep principles. For example, we might attempt to
formulate the equivalence principle in a sufficiently general way that it applies to the causaloid
framework. This is clearly a much more difficult route to get started on. In practice, some
combination of these two approaches is most likely to be successful. It is likely that, by having
the two less fundamental theories formulated in the same framework, we will be in a better
position to extract principles from which QG can be derived.

8. Conclusions

A theory of QG is likely to have features that neither GR or QT have. For example, in GR
and QT there is a definite matter of fact as to whether an interval is timelike or not (in QT this
is specified in advance whereas in GR we know this only after solving the equations). The
strategy we have adopted to work towards the construction of QG is to construct a framework,
the causaloid formalism, which is likely to be general enough to contain QG as a special case.
This is essential since if we work in a framework that cannot, in principle, contain QG then
we have no chance of formulating QG in the given framework. The causaloid formalism does
contain QT and it is likely to contain GR.

The formulation of QT in this framework uses a notion of ‘generalized preparation’. An
example of this is pre- and post-selection in the framework of Aharanov, Bergmann, and
Lebowitz (ABL) [8].

In QG it is likely that we will lose the notion of an external time unaffected by what
happens in the experiment. This is likely to imply that we cannot have unitary evolution.
More accurately, it is likely to imply that the theory which results when we take that limiting
case of QG that approximates QT will not quite have unitary evolution. This might be
consistent with collapse models (such as those of Ghirardi, Rimmini and Weber [9], and
Pearle [10]). The possibility of a connection between gravity and non-unitary evolution does,
of course, have a long history (see in particular [11, 12], and for a different take see [13]).
However, the situation might actually be more subtle. It is possible that, unlike in collapse
models, the theory will remain time-symmetric (in so much as such a notion makes sense in the
absence of fixed causal structure) just as the formulation of ABL is time symmetric. Collapse
models employ the notion of an evolving state at a fundamental level whilst such a notion
is unlikely to be fundamental in QG. But since the measurement problem is a fundamental
problem, we would like its solution to be implicit in the fundamental formulation of QG rather
than just in the limiting case of QT. This raises deep questions concerning whether collapse is
the right way to solve the measurement problem.



A framework for probabilistic theories with non-fixed causal structure 3099

References

[1] Polchinski J 1998 String Theory vols 1 and 2 (Cambridge: Cambridge University Press)
[2] Rovelli C 2004 Quantum Gravity (Cambridge: Cambridge University Press)

Thiemann T 2003 Lectures on Loop Quantum Gravity (Lecture Notes in Physics vol 641) (Berlin: Springer)
Smolin L 2004 An invitation to loop quantum gravity Preprint hep-th/0408048

[3] Einstein A 1916 Die Grundlage der allgemeinen Relativitätstheorie Annalen der Physik 354 769
Einstein A 1952 The Principle of Relativity translated by W Perrett and G B Jeffery (New York: Dover) (Engl.

Transl.)
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